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ABSTRACT:-A congestion control model of a network of signalized intersections is proposed based on a 

discrete – time, steady state Markov decision process. The model incorporates probabilistic forecasts of 

individual video actuations at downstream inductance loop detectors that are derived from a macroscopic link 

transfer function. The model is tested both on a typical isolated Roberston’s traffic platoon intersection and a 

simple network comprised of five four – legged signalized intersections, and compared to full-actuated control. 

Analyses of simulation results using this approach show significant improvement over traditional  full-actuated 

control, especially for the case of high volume, but not saturated, traffic demand. 
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1. Background 

 The existence of real-time congestion traffic 

control systems that react to actual traffic conditions 

on-line, the most notable among these being the 

well-known OPAC algorithm(Gartner,1983 ), and 

RHODES, a real-time traffic –congestion control 

system that uses a traffic flow arrivals 

algorithm(HEAD,1995) based on detector 

information to predict future traffic volume. 

 

 In general, two issues must be addressed to 

achieve real-time congestion traffic control: (1) 

development of a mathematical model for the 

control of the stochastic, highly nonlinear VTST 

system, and (2) design of appropriate control law 

such that the behavior of the system meets certain 

performance indices (e.g., minimum queue length, 

minimum delay time, etc.). Mathematical  models 

used for the representation of traffic phenomena on 

signalized surface street network can be classified 

into the following three generalized categories: (1) 

store-and forward models (Hakimi, 2009; Singh and 

Tamura, 2006; D’s Ans and Gazis, 2008), (2) 

dispersion-and-store model Cremer and Schoof, 

2007; Chang etal., 1994), and (3) kinematic wave 

models(Stephanedes and Chang, 1993 , Lo, 2001). 

 There are two fundamental approaches for 

on-line optimization: binary choice logic and the 

sequential approach. In the binary choice logic 

approach, time is divided into successive small 

intervals, and a binary decision is made either to 

extend the current signal phase by one interval, or to 

terminate it. Examples of this approach include 

Miller’s algorithm, traffic optimization logic(TOL), 

modernized optimized service actuation strategy 

(OSAS), stepwise adjustment of VTST timing 

(SAVTSTT), etc. (Lin,2009; Lin and Vijayakumar, 

2010). The drawback of this approach is that it only 

considers a very short future time interval (usually 

3-6 s) for the decision, and thus cannot guarantee 

the overall optimization of the VTST operation. In 

the sequential; approach, the length of a decision-

making stage is relatively longer (from 50 to100 s) 

to more closely approach the long-term optimal 

control. In OPAC, developed explicitly for real-time 

traffic control, the alternative disadvantages of the 

binary and sequential approaches are mitigated by 

incorporating a rolling-horizon approach; however, 

its application formally is limited to isolated 

intersections. Artificial neural networks (ANN) also 

have been applied to finding the solution for traffic 

control problems (Nakatsuji and Kaku, 2007) 

through an assumed mapping between the control 

variables (e.g., the split) and the objective function 

(e.g., the queue length); the neural network is 

trained off-line, using the nonlinear mapping ability 

of ANN, to realize this relationship. Then the signal 
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optimization is performed on-line, using the self-

organization property of an ANN. The training 

algorithm is a stepwise method(combination of a 

Cauchy machine and the “back-propagation” 

algorithm). However, this approach is valid only 

when the traffic system is in steady state. 

2. Introduction  

 At a signalized intersection, VTST operates 

in one of three different control modes: In pre-times 

control, semi-actuated control and full-actuated 

control (Wilshire etal., 2006). In pre-timed control, 

all of the control parameters are fixed and preset 

off-line. Off-line techniques (e.g., the various 

versions of the TRANSYT (Robertson 2002) family 

of software packages) are useful in generating the 

parameters for fixed timing plans for conventional 

pre-timed urban  traffic control systems based on 

the deterministic traffic conditions during different 

time periods of the day (e.g., peak hours, off-peak 

hours). In actuated (both semi- and full-) control, 

the control service is adjusted in accordance with a 

“closed-loop, on-line” control strategy based on 

real-time traffic demand measures obtaind from 

detectors; while the controllers themselves respond 

to the fluctuations of the traffic flows in the 

network, the base parameters do not. Alternatively, 

a class of control algorithms that includes SCOOT 

(Split, Cycle And Optimization Technique) (Hunt 

etal., 2008; Robertson and Bretherton, 2002) and 

CCTS (Coordinated Congestion Traffic System) 

(Lowrie, 2006) are generally considered to be “On-

line” algorithms, in which the control strategy is to 

“match” the current traffic conditions obtained from 

detectors to the “best” pre-calculated off-line timing 

plan. 

 Although most existing congestion signal 

control strategies incorporate an implicit 

recognition that traffic conditions are time variant 

due to Stochastic processes, they generally adopt 

explicitly deterministic control models. 

Additionally, most employ heuristic control 

strategies without an embedded traffic flow model. 

Alternatively, the random nature of the traffic signal 

lends itself more directly to a stochastic control 

approach. In the work reported here, a stochastic 

traffic signal control scheme, based on Markovian 

decision control, is introduced. The objective is to 

develop a real-time congestion control strategy that 

explicitly incorporates the random nature of the 

traffic system in the control. A Markov control 

model is first developed; then the signal control 

problem is formulated as a decision-making 

problem for the Markov model. This approach is 

tested both on a typical isolated traffic intersection 

and a simple network comprised of five four-legged 

signalized intersection improvement over traditional 

full-actuated control, especially for the case of high 

volume traffic demand. 

 

 

 

3. Markov Service Traffic Control Model 

 A stochastic process x(t) is called Markov 

(Papoulis, 2006) if its future probabilities are 

determined by its most recent values; i.e., if for 

every n and             t1 < t2 < ..... < tn 

P(x(tn) ≤ xn/x(t)≤ xn-1, t) = P(x(tn) ≤ x(tn-1)). 

 The congestion control algorithm proposed 

is based on a discrete, stationary, Markov control 

model defined on (X, A ,P,R), where  

(i) X, a Brownian space is the state space and every 

element in the space x X is called a state;   

(ii) A , also a Brownian space, is defined as the set of 

all possible controls( or alternatives). Each state x

X is associated with a non-empty measurable subset 

A  (x) of A  whose elements are the admissible 

alternatives when the system is in state x; 

(iii) P ,  a probability measure space in which an 

element k

ijp  denotes the transition probability from 

state i to state j under alternative action k; and  

(iv) R, a measurable function, also called a one-step 

reward.   

Selection of a particular alternative results to an 

immediate reward and a transition   probability to 

the next  state . The total expected discounted 

reward over an infinite period of time is defined as                                 
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Where r (·) is the one-step transition reward, t ( 

0 ≤ t ≤ 1) is the discount factor, and h is the 

policy. The optimal reward d
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It can be obtained by solving a functional equation 

(also called the dynamic programming equation, or 

DPE):  
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The unique solution of the above DPE can be 

calculated iteratively by the successive 

approximation method            (Hernandez-

Lerma,2008)      
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Therefore, for a specific control problem, once 

the transition matrix and the reward matrix are 

defined, then by maximizing the total expected 

reward, a policy for choosing an alternative for each 

state can be obtained. This represents the optimal 

strategy that should be followed. 

4. Traffic  Flow 

Consider the typical four-legged isolated traffic 

intersection shown in Fig.1, where the various 

possible traffic movements. 

The state equation for the continuous traffic 

flow process associated with any  

movement j that is sampled every t  

seconds, where time is indexed with the integer k , 

can be expressed by the current queue jq k : 

,1 kqkqkq jjj  j = 1, 2, …. , 8,                                                                        

(7)  

 

    Fig.1. A typical video traffic intersection.  

 

where  kqkqkq j

out

j

in

j  is the difference 

between the input kq j

in  and the output kq j

out

during time interval 1,k k , and jq 1k is the 

queue at previous time instant 1k . For a typical 

four-legged traffic intersection with eight 

movements, the current queue q k  can be further 

defined by the vector    

      
TTj kqkqkqkqkq 821 ,,,      (8)                                          

where prime ( T  ) is used to denote transpose. The 

input kq
in  and output kq

out of the intersection 

(i.e., number of video conferences entering/leaving 

the intersection) can also be similarly defined as 

vectors of like dimension: 

      

Tj

inin kqkq , 
Tj

outout kqkq   (9)                                

The output kq
out can further be expressed as a 

function of the current control of the intersection, 

c k , and the current queue, kq :

 kqkcfkq
outout

,       (10)                             
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Where kq
out

 is also a vector of the same 

dimension, i.e., 

  
Tj

outout
kfkq       (11) 

and where the elements kf j

out are    determined by 

     

       min

min ; , 0

0,                       1

j j

j

out

j

t
q k c k

hf k

c k
     

(12)                  

In which minh is the minimum head way and jc k   

is a dichotomous variable indicating the control 

signal for the thj  movement: 0jc k denotes that 

the thj movement has the green signal and jc 1k

indicates a red signal. 

Under standard eight-phase dual-ring 

control(Fig.2), the barrier divides the eight phases 

into two interlocked groups(rings):east/west and 

north/south: in each ring, four movements(two 

through movements and their corresponding left-

turn movements) must be served if there is demand. 

Although there are 2.4!=48 different phase 

sequences available, depending on the traffic 

demand, the ring and barrier rules restrict the 

maximum number of 

phase transition in a single cycle to six- a maximum 

of three distinct phase combinations on each side of 

the barrier. Using this information, the phase 

sequencing constraints on choice of the current 

control depends, at most, on three previous control 

signals: 

 

 

            Fig.2. Eight-phase dual-ring service control                                       

 

,,,,, 321 kckckckqfkc u        
(13)                               

Where 1  is the time duration of the most recent 

previous phase, 2 is the time duration of the next-

to-last phase, and so on. In addition to the 

sequencing constraints, the duration of the current 

signal,  must be bounded between some minimum 

(e.g. minimum green, minimum green extension) 

and (maximum green) time period: 

  τmin ≤ τ ≤  τmax                            (14) 

This schema easily can be generalized to traffic 

network with multiple intersections. In a traffic 

network with n intersection, the order of the 

dynamic equation is increased to               n x 

8(assuming that there are eight traffic movements in 

each intersection). However, any complicated 

traffic network can be decomposed into a group of 

small “elementary networks” as shown in Fig.3, 

consisting of five intersections. In this manner the 

study of the entire traffic network can be reduced to 

the analysis of these elementary networks and the 

inter-connections between them. 

The complete traffic dynamic model for the 

network shown in Fig.3  

                 

T
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T
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Fig.3. A typical elementary traffic network with five intersections. 

 

where  

 kqkcfkq j

i

j

iout

j

outi ,       (16)          

min

min ; , 0,

0,                       1

j j

i ij

out

j

i

t
q k c k

hf k

c k

                 

   i = 1, 2, …,5;   j = 1, 2, …,8                 (17) 

 In Eq. (15), the subscripts to the various 

vector quantities refer to the particular intersection, 

and the vector quantities themselves are as 

previously defined. 

 Unlike the case of an isolated intersection, 

the interactions between intersections must be 

included in the traffic model for this case.  For 

example, consider the simple case of the two 

adjacent intersections shown in Fig. 4. 

               Fig.4. A traffic network with two intersections 

 

 The eight traffic movements associated with 

each intersection can be classified into two different 

types: 

1. External movement. The arrival videos come 

from/go to a “dummy node” outside the network 

(these video can be considered as the “input/output” 

of this network); and 

2. Internal movement. The arrival videos comes/goes 

to a neighboring node inside the network(these 

video can be considered as the “interconnection” of 

this network). 

 

For example, movements 1 and 6 are internal 

movements of intersection I, which receive the 

outputs from intersection II, movements 3 and 6. 

All of the other movements of intersection one are 

external movements. Similarly, all of the 

movements of intersection II are external 

movements, with the exception of movements 2 and 

5, which receive the output from the movements 2 

and 7 of intersection I. then, for intersection, the 

internal movements are defined by 
6

,
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,
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,
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,
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,

6

1 ,,, IIIoutIIIIIIIIIIIoutIIIIIIIIinin TkqTkTkqTkfkq     (18)                                          

where 21

21

,

,

jj

ii
 is defined as the video moving fraction 

from intersection 1i , movement 1j to intersection 2i , 

movement 2j and where 1

21 ,

j

iiT  represents the time for 

the first video conference in the platoon of video in 

movement 1j of intersection 1i  to reach intersection 

2i . 



International Journal of Scientific & Engineering Research Volume 3, Issue 7, July-2012                                                                                         6 
ISSN 2229-5518 

 

IJSER © 2012 

http://www.ijser.org  

 The time- dependent moving factors can be 

represented by the moving fraction matrix, k , 

whose elements indicate the percentage of video 

moving from a certain movement at the upstream 

intersection to a specific movement at the 

downstream intersection. For the case of two 

intersections shown in Fig. 4, k  can be written 

as a 16x16 matrix: 
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where 
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Using this general expression for k

,

 , ,  ,, , ,j r j r r r i

in i in m i m i out m m i m iq k f k T q k T r M m I                                                                  

(20) 

where iI is the set of all neighboring intersections 

with direct approaches to intersection I, and i

mM is 

the set of all movements of intersection m that 

contribute to the internal movements of intersection 

i . 

Practical application of Eq. (20) relies on the 

ability to predict both the time-dependent moving 

fractions, k , and the platoon travel times from 

neighboring intersections to the target intersection, 
1

21 ,

j

iiT . The estimation of moving fractions from 

count data has been the subject of numerous 

investigations; see, e.g., the review provided by 

Maher(1984) for a proposed of models that require 

counts for only one cycle but needed prior turning 

proportion estimation. Davis and Lan (1995) gave a 

method that estimates intersection turning 

movement proportions from less-than-complete sets 

of traffic counts. Chang and Tao (1997) propose a 

time-dependent turning estimation that incorporates 

service timing parameters on the distribution of 

intersection flow. Mirchandani etal. (2001) gave 

four closed-form estimation methods:(i) maximum 

entropy(ME), (ii) generalized least squared(GLS), 

(iii) least-squared error(LS), and        (iv) least-

squared error/ generalized least squared 

error(LS/GLS). 

In its basic model representation:

1 0 2 0 1 01 1Q t T F Q t F Q t T                 (21)                                           

   where    

  
avgT

F
1

1
 

and where 1Q  , 2Q  are traffic volumes at the 

downstream and upstream intersections(measured in 

videos/h), respectively; α and β are called platoon 

dispersion parameters; t0 is the initial time when the 

platoon leaves upstream intersection; Tavg is the 

average travel time, and T is the minimum travel 

time between the two intersections. 

  T = βTavg                  (22)                

Substituting Robertson’s platoon dispersion formula 

into Eq.(20) leads to
,

 , ,  ,  1 1
i
m

i

j r j r r r j

in i m i m i out m m i in i

r M

m I

q k F k T q k T F q k     (23)                                               

with the current control vector defined by  

321 ,,,, kckckckqfkc iiiiici                (24)         
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where iii maxmin , jr

im

,

,
can be derived from 

counts from upstream stopline detectors according 

to existing procedures discussed previously, and 

where the r

imT ,
 are determined by Eq. (22) from 

parameter specification and average travel speed. 

 

5. Markov congestion control model for VTST 

system 

 The state variable in the traffic dynamics 

equation developed above is queue length. 

Although the state of the Markov control model can 

be defined as the number of video conference in the 

intersection, this approach results in an excessively 

large number of states, even for a single 

intersection. To address this problem, the state of 

the Markov control model is instead defined by 

introduction of a binary threshold value (number of 

video conferences) indicating whether of not the 

current queue for a particular movement is 

sufficiently large to be “congested”, i.e., if the 

queue length of a specific movement is greater than 

its threshold value, then the movement is in the 

“congested mode”; otherwise it is in the “non-

congested mode”. These binary modes 

(congestion/non-congestion) are defined as the two 

states in the state space X. 

 Since the state space is discrete, the 

probability measures P is a discrete transition law, 

and the probability matrix P  is time-varying traffic 

flow. At time step k, P  is a function of q k , 

1q k  and c k :  

, 1 ,p inP k f q k q k c k       (25)  

                    

where  q k is the current queue, 1q k is the 

estimated number of arrivals in the next time 

interval, and c k is the control signal. Assuming 

that at time step, the current queue length of a 

specific movement I is denoted by 0q ; and gq video 

can pass through the intersection if the traffic signal 

for this movement is green; then the transition 

probability from any current state (either congested 

or non-congested) to the non-congested state under 

control signal c can be written as 

0
i

i i

i
c i i i

S N i g thresholdin
P p q q c q q   (26)                   

and, to the congested state, as  

  1i i

i i i i

c c

S C S Np p       (27)    

Where   i1,    when c

0,          otherwise.

i

i

G
c       (28)     

       In the above, i

thresholdq is the threshold which 

defines the congested/non-congested state; iS is the 

current state ( iN for non-congested state and iC  for 

congested state); ic is the control signal     ( iG for 

green signal and iR  for red signal). Two special 

cases are noted in that: 

 1i

i i

R

C Cp  and 0i

i i

R

C Np       (29)                     

         As mentioned previously, for a typical traffic 

intersection with eight independent movements, the 

total number of states is 2
8
 = 256. The transition 

probability for each movement is also independent; 

therefore, the overall transition probability for an 

intersection is  

 
8

1

i

j r i i

cc

State State S S

i

p p        (30)                  

where  

j,r=1,2,…,256; and  c k  =[u1,u2,…,u8]
T
. The 

reward matrix R has the same dimension and a 

definition similar to that of the probability matrix. 

The control objective is to maintain the non-

congested condition or, if already congested, to 

transit to a non-congested state. The latter yields a 

greater reward than the former and the transition 

from a non-congested state to congest carries a 

greater penalty than remaining in a congested state. 

Since the congested/non-congested state is defined 

in terms of queue length, the reward matrix is a 
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function of the current queue, the threshold, and the 

control signal: 

0 , ,r thresholdR k f q k q k c k

    

(31)    

For example, if the objective is to minimize the 

queue length, then the reward for each possible case 

can be chosen as the following: 

  
0 1

i

i i

G i

N Nr q M  

  
0 2

i

i i

R i

N Nr q M  

  
0 3

i

i i

G i

N Cr q M  

  
4

i

i i

R

N Cr M     

  
0 5
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G i

C Nr q M  

  . .i

i i

R

C Nr N A   

  
0 6

i

i i

G i

C Cr q M  

  
7

i

i i

R

N Nr M  

Where iM  , i = 1,2,…,7, are constants which can be 

specified for a specific control problem. 

 Similar to the probability matrix, the overall 

reward for an intersection with eight independent 

movements is 

   
8

1

i

j r i i

cc

State State S S

i

r r ,   

where  ,j r =1,2,…,256.                  (32)   

            The signal phase are the different alternative 

for each state; for a typical isolated traffic 

intersection with eight independent movements 

under eight-phase dual-ring signal, the signal 

control problem takes the form of a 256-state 

Markov process with eight alternative for each state. 

The optimal policy is then obtained by selecting the 

alternative for each state that maximizes the total 

expected reward. As has been demonstrated above, 

this optimal solution is unique and can be calculated 

iteratively by the successive approximation method. 

 The proposed Markov control model can be 

illustrated by the simplified example of the two-

phase isolated intersection shown in Fig. 5, in which 

traffic flows along two directions,           i.e., 

north/south (denoted by 1) and east/west  (denoted 

by 2). Thus, there are four possible state, i.e., 

1 2 1 2 1 2 1 2, , ,N N N C C N C C . Fig. 6 shows the 

schematics of this Markov Chain. To simplify the 

example, amber displays and all red signals ( 1 2R R ) 

are ignored; 1 2G G is prohibited for obvious reasons. 

Under these conditions, there are two alternatives 

(signal phases) in each state, i.e., 1 2G R and 1 2R G . 

With the usual assumption of Poisson arrivals, the 

various transition probabilities can be calculated 

directly. For example, the transition probabilities 

from the non-congested states are 

       
1 !

threshold g
nq q q t

G

N C

n

t e
p

n
     

        
1 !

threshold
n tq q

G

N N

n

t e
p

n
            (33) 

 1G G

N C N Np p
,

1R R

N C N Np p ,      (34)                         

Fig.5. An isolated intersection with through movements only 

 

where n is a positive integer ( n  = 1,2,…);  is the 

average video  arrival rate  and t is the time 

interval (i.e., duration of each counting period). 

The corresponding state probabilities are 

1 2 1 2

1 2 1 2 1 1 2 2

G R G R

N N N N N N N Np p p , 

1 2 1 2

1 2 1 2 1 1 2 2

G R G R

N N N C N N N Cp p p , 

                      (35) 
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                   Fig.6. The Markov Chain for the example 

 

 Since, for this example, there are four states 

with two alternatives for each state, the elements 

above form an 8x4 transition probability matrix, as 

shown in Table 1. Elements of the reward matrix 

can be calculated in similar fashion. 

 A general block diagram of control using 

this scheme at an isolated signalized intersection is 

illustrated in Fig.7. Based on the current and the 

estimated traffic flow, the controller generates a 

traffic control signal to control the traffic system for 

the next time interval. 

              Fig. 7. Traffic control at signalized system 

 

In the application of this procedure to real-

time congestion control for a traffic system, the 

time-varying probability matrix P and the reward 

matrix  R  are calculated and updated every t
seconds; a decision is then made regarding the 

choice of the control signal for the next 

 

 

                  Fig.8. Traffic control for two intersections 

 

time interval based on the current measurement 

from the detector, as well as the estimation. Once 

the optimal policy is found, it is implemented for 

one time step(i.e., t seconds). At the next time 

interval, both the probability matrix and reward 

matrix are updated and the whole decision making 

process is repeated.  

Table 1. The state probability matrix for the example 
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 To enforce the phase constraints, a step-by-

step decision-making procedure (also termed a 

“decision tree”) is employed. For example, a 

decision is made first to determine which ring will 

be served by the Markovian decision algorithm. 

After this is determined, the second decision is to 

choose one of the four alternatives from the first 

decision, again using the Markovian decision 

algorithm. The next phase is either fixed or can be 

chosen from the two phases left, depending upon 

the second decision. At the last decision step for this 

ring, there is either no phase or just one fixed phase 



International Journal of Scientific & Engineering Research Volume 3, Issue 7, July-2012                                                                                         10 
ISSN 2229-5518 

 

IJSER © 2012 

http://www.ijser.org  

left. This procedure not only guarantees the phase 

constraints but also dramatically reduces 

computation time. 

 Application of the decision control to the 

signal control of a network of multiple intersections 

proceeds along a similar manner; a block diagram 

for the control system of two traffic intersections is 

shown in Fig.8. In such cases, the control signal of 

the two neighboring intersections do not interact 

until some minimum travel time, at which time the 

control is modeled through the probability 

estimation of internal movement arrivals at the 

downstream intersections. That is, assuming that the 

minimum travel time between two intersections is 

longer than the minimum green extension time, the 

control signals of the two intersections do not 

interact due to the random travel time delay 

between them. After the minimum travel time, the 

control at one intersection does affect intersections 

downstream; this effect is modeled in the 

probability estimation at the downstream 

intersections. As a result, adjacent intersections can 

be “isolated” and the respective control actions can 

be separately. 

 

6. Results on application of Markov congestion 

model 

 In this section, the control model is tested by 

simulation on both an isolated traffic intersection 

and a typical traffic network with five 

interconnected intersections to evaluate its 

performance with respect to conventional full-

actuated control. Specifically, a series of computer 

simulations are performed, under various different 

video arrival rates, and the means and variances of 

the respective performance measures of the 

conventional and proposed congestion control 

algorithm are analyzed. The simulations assume 

that queues on all approaches are empty as an initial 

condition and that video arrivals on external 

approaches follow a Poisson distribution; for 

demonstration purposes, a value of qthreshold = 1 (i.e., 

the presence of any queue) was assumed. The 

reward matrix was based on the objective being to 

minimize the queue length, and the reward 

calculated according to Eq.(32). In the case of the 

network simulation, the distance between any two 

adjacent intersections is chosen to be 1000 feet. The 

parameters used in the simulation (for all the 

movements) are summarized as follows:  

 Using the same set of input (arrival) data, 

the Markovian control algorithm and the 

conventional full-actuated control were applied to a 

four-legged isolated traffic intersection, such as that 

shown in Fig.1, with eight movements(four through 

movements and their corresponding left-turn 

movements) to evaluate their performances. The 

algorithm used to simulate full-actuated control was 

designed to mimic the logic of a common type 170 

dual ring controller with parameters as specified in 

the previous table-eight-phase operation was 

assumed. To minimize initial condition effects, the 

two algorithms are applied for a simulated time of 

65 min., and the average delay (per video) during 

the last dive minutes of the simulation is used for 

comparison. Two different general cases were 

considered: (1) uniform demand among all 

conflicting movements, and (2) the through traffic 

demand dominates the left-turn demand by a ratio 

of 2:1. The two algorithms were applied for 

different arrival rates, representing a range of both 

unsaturated and saturated conditions.(under the 

assumption of 2-second minimum headways, the 

intersection has a total capacity of 3600 videos per 

hour of green). In order to provide statistical 

significance for the simulation results, the two 

algorithms were tested on different sets of random 

data for each arrival rate ( a total of forty on the 

cases in which left-moving traffic was assumed 

equal to through traffic, and fifteen in the cases in 

which left-moving traffic was equal to half of the 

through traffic). 

 The means of the average delay per video 

for the final- minute period of each set of forty 

simulations corresponding to the two cases of left-

move to through traffic of 1.0(LM/T=1.0) and 

0.5(LM/T=0.5) are plotted in Fig. 9, where “MCC” 

stands for the Markov congestion control algorithm 

and “FAC” stands for the full-actuated control. As a 

further “benchmark” comparison, delay calculations 

based on Webster’s delay equation for Poisson 

arrivals under fixed-time (pre-timed) control are 
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also provided (labeled Pre (C=60s) and Pre(C=45s) 

for cycle lengths of 60 and 45 s, respectively. 

 Significance tests based on t-statistics 

resulting from hypothesis tests on the difference of 

sample means indicate that the difference in means 

of the simulation results is significantly different (at 

0.05 level or above) for all cases except for the 

LM/T = 1.0 case in which the total intersection 

volume 1500vph. The hypothesis tests on the 

difference of means assume that the two 

populations are independent and have a normal 

distribution. Alternatively, order statistics 

(distribution-free statistics) estimate the limits 

within which a certain percentage of the probability 

of the random variable with a certain degree of 

conference without having prior knowledge of the 

probability distribution. For the case involving 40 

samples taken from a  

 

 

 

Fig.9. Algorithm performance comparison for isolated intersection 

 

population, the upper/lower bound within which 

90% of the probability of the random variable lies 

can be obtained with 95% confidence. Fig.10 

displays these bounds on the steady state delay 

resulting both from full-actuated and from 

Markovian control algorithms.  

From the above figures, except for the case 

in which the left-move traffic volume is equal to the 

through volume (LM/T=1.0) and the volume is 

relatively light(e.g., arrival rate is 200 video 

/hour/movement), the performance of the Markov 

algorithm is significantly better than the fully 

actuated controller(as well as the pre-timed 

controller). For example, for LM/T=1.0, when = 

300, the Markov algorithm shows about a 25% 

improvement on the average steady state delay; for 

 = 400 and = 500, the average steady state 

delay of the Markov controller is only about one 

half of that of the full-actuated controller. As 

expected, under saturated conditions both algorithm 

exhibit increasingly worse delay, although the 

Markov control (on average) still outperforms full-

actuated control. The simulation results indicate that 

by applying the Markov 

 

 

             Fig.10.Upper and lower bounds on simulation results 

 

congestion control algorithm, the average delay at 

an isolated intersection may be reduced 

dramatically (22-51%). 

 The Markov congestion control algorithm 

was also tested on a typical traffic network of five 

intersections, such as that depicted in Fig.3. For this 

case, Poisson arrivals were assumed at the external 

inputs; the arrivals at all interval approaches are an 

outcome of the control strategy employed at 

associated upstream intersections. The tests were 
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conducted for LM/T = 1.0 using five different 

arrival rates:  = 200,300,400,500 and 600 video 

per hour per movement. The internal approaches 

linking the five intersections were assumed to be 

1000 ft in length , and the average travel speed 

assumed to be 30mph(resulting in a value of 

Tavg=23s). The parameters in Robertson’s platoon 

dispersion model were assumed to be α = 0.35,  β = 

0.8 – the common default values for Indian studies. 

The mean values(of the 40 sets of data ) of the 

steady state delay are plotted in Fig. 11. The dotted 

lines in Fig. 11 display the upper/lower bounds 

within which 90% of the probability of the steady 

state delay resulting both from full-actuated and 

Markovian control algorithms lay.  

The results indicate that the Markov 

algorithm substantially outperforms traditional full-

actuated control, particularly when the intersection 

is at, or near saturation. For example, when 

≤500(total intersection volume of 4000vph), the 

average steady state delay of the Markov controller 

is only about one half of that of the fully actuated 

controller. Under heavy over-saturated conditions (

=600), delay with both algorithms tend to 

converge at a high value. 

 

Fig.11. Algorithm performance comparison for simple network case 

 

Fig.12. MCC performance comparison between network and isolated 

intersection examples 

 

 We note that, under simple five-node 

network conditions with identical arrival rates, the 

performance of the Markov control algorithm 

closely mirrors that obtained in the case of the 

isolated intersection example (Fig.12). Although   

preliminary, the result suggest that application of 

the algorithm in a network setting tends to decrease 

variability in performance; this is expected, since 

the variability expressed in the Poisson arrival 

patterns at the external nodes becomes as 

increasingly minor factor as the number of internal 

approaches increases. This latter factor may help to 

explain the large variance seen in the isolated 

intersection case under heavy oversaturation. 

Fig. 13. Maximum queue comparison (3200 vph) 

 

 As stated previously, the specific objective 

used in these examples of application of the Markov 

congestion control algorithm was not specifically to 

minimize delay, but rather to minimize the queues 

on the intersection approaches; the delay 

performance characteristics presented above were 

an ancillary outcome of the specific objective. 

Relative to performance related to that specific 

objective, Fig.13 presents representative values of 

the maximum queues for each movements obtained 
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for the network case in which the total intersection 

volume is 3200vph, or about 90% of intersection 

capacity. 

 The results indicate that the Markov 

congestion control algorithm significantly out 

performs full-actuated control in this aspect, 

although it must be noted that full-actuated control 

is not explicitly designed to minimize queue length, 

but rather implicitly works towards this end via its 

extension settings. 

6. Summary and conclusions 

Traffic signal control is a major ATMS 

component and its enhancement arguably is the 

most efficient way to reduce surface street 

congestion. The objective of the research presented 

here has been to present a more effective systematic 

approach to achieve real-time congested signal 

control for traffic networks. 

In this research, the problem of finding 

optimal VTST timing plans has been solved as a 

decision-making problem for a controlled Markov 

process. Controlled Markov processes have been 

used extensively to analyze and control complicated 

stochastic dynamical systems; its probabilistic, 

decision making features match almost perfectly 

with the design features of a traffic signal control 

system. The Markovian decision model developed 

herein as the system model for signal control 

incorporates Robertson’s platoon dispersion traffic 

model between intersections and employs the value 

iteration algorithm to find the optimal decision for 

the controlled Markov process. Analysis of 

computer simulation results indicates that this 

systematic approach is more efficient that the full-

actuated control, especially under the conditions of 

high traffic demand. 

 There are ,of course, significant limitation to 

the present approach. Most notable is that as the 

size of the traffic network increases, i.e., the number 

of nodes/intersections and /or links increases, the 

dimensions of the Markovian control model 

increases dramatically, requiring more memory 

space and computation time. This dimensionality 

issue is very important to real-time implementation, 

where processing speed is crucial. In the current 

formulation, one potential solution to this problem 

is alluded to by decomposing the network into sets 

of inter-linked network kernels of five intersections 

that could be handled by distributed/parallel 

processing protocols; however, no attempt has been 

made to thoroughly investigate the issues of such 

decomposition algorithms. Further, before any 

attempt to implement the results, a comprehensive 

sensitivity analysis needs to be conducted to study 

the effects of the various parameters employed in 

the simulation testing on both the performance of 

the model as well as on the objective function. 

Finally, for field testing, the original C language 

code must first be rewritten into assembly language; 

then firmware can be loaded, or “  burned in” to the 

PROM (Programmable Read Only Memory) chip of 

the controller. The work can be extended to 

multistage traffic flow conferencing. 
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